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SUMMARY 

The problem of truncating nearshore finite element wave models is addressed. Incorrect treatment of 
the artificial boundaries of the model will cause spurious wave reflections. Three methods for dealing 
with these boundaries: application of constraints, use of the Smith condition and longshore dampers, 
are proposed. Numerical results show the dampers to be the best method. 
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INTRODUCTION 

We consider the problem in which we wish to predict numerically patterns of waves in a 
region adjacent to a long c o a ~ t l i n e . ~ , ~ ’ ~  The numerical model will thus have four boundaries, 
enclosing the region of interest: the coastline, two arbitrary boundaries roughly normal to 
the coast and a seaward boundary, as sketched in Figure 1. In this paper we are concerned 
with accurate modelling of the two artificial boundaries normal to the coast. The effect of the 
seaward boundary is usually less significant. 

Waves from deep water are incident upon the coastline at some angle 8. As they encounter 
the shallower water they refract; so that, in general, the angle of incidence becomes smaller. 
At a certain point they begin to break and energy is changed into heat and sound in the surf 
zone. 

In the region of interest the problem can be complicated by wave reflections leading to 
partial standing waves, diffraction and resonance effects. In the traditional method of ray 
tracing these effects can be modelled only with difficulty. In what follows we assume that the 
domain of interest is modelled using finite elements, which can cope effectively with these 
phenomena. Most of the discussion would apply equally to finite differences. 

FINITE ELEMENT MODELLING OF WAVES 

The starting point for the numerical model is the wave equation of Berkhoff3 
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Figure 1. Geometry of coastline-showing boundaries of numerical model 

which gives the shallow water wave equation as a special case. Here 4 is a complex velocity 
potential, w is the frequency, c is the wave celerity and c = w/k. The dispersion relation 

w 2  = gk tanh kh (2) 

gives the frequency w in terms of acceleration due to gravity g, depth h and wavenumber k. 
Wavenumber k is defined as 2rr/A, where h is the surface wavelength. The group velocity c, 
is given by 

c,=- 1+ ( sinh2kh 

The surface elevation 3 can be obtained from the velocity potential 4 by 

i o  
g 

3 = - 4  

(3)  

(4) 

Also the orbital velocities u and u in the waves can be obtained from the velocity potential 
4. 

( 5 )  34 34 
ax ’ aY 

v=- u=- 

All quantities are factored by exp (iwt), as the problem is completely periodic. The functional 
corresponding to equation (1) is 

n 

Now this functional can be used as the basis for a finite element model. Diffraction and 
refraction effects are modelled automatically using such elements. If eight-noded elements 
are used then about four are needed per wavelength for reasonable accuracy. The natural 
boundary condition to the functional is 

-=o  34 
an 

which implies zero velocity normal to the boundary, and complete wave reflection. 

(7) 
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A finite element shape function N is now introduced such that within an element 

where 4 is the set of nodal values of the velocity potential. In the program used for this work 
eight-noded quadrilateral elements were adopted. For further details of the theory of finite 
elements see Zienkiewicz.” In the finite element model the known incident waves give rise 
to ‘loading’ terms.5 The resulting element matrices are assembled and solved for the values 
of # at all nodes. More details of the process of finite element modelling of waves are given 
in Reference 5.  Because linear wave theory is being used all the other required quantities 
can be obtained from #. 

Where waves are to be absorbed, for example on open boundaries, or at permeable 
breakwaters or on beaches, a ‘damper’ boundary condition can be introduced. This boundary 
condition is 

9+ ik# = 0 
an (9) 

If a line integral is added to the functional (4), consisting of 

on these boundaries, S, on which waves are to be absorbed, then the natural boundary 
condition on S becomes equation (9). Partial absorption can be dealt with by multiplying the 
line integral by some factor between 0 and 1, these two values representing total reflection 
and total absorption. 

When the water becomes shallow the waves break and their energy is dissipated. This is an 
extremely complicated effect and is difficult to model accurately. In our model the waves are 
simply absorbed at the beach by line dampers. The depths close to the shore are altered as 
shown in Figure 2 so that they remain finite. Otherwise the wavenumber k = o / J ( g h )  tends 
to infinity and the wavelength tends to zero. Since it is necessary to use about four elements 
per wavelength this obviously causes numerical difficulties. Instead, if the depth is altered as 
described, the wavelength remains finite. The waves are propagated right up to the shoreline. 
Because they have refracted on the way up the beach they are, for all practical purposes, 
normally incident. These normal waves are then absorbed using dampers of the type 
described by equation (9). The k value is derived from the depth h at the shoreline. 

Shofdine 

Figure 2. Cross-section of beach-showing idealized depths 
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REPEATABILITY BOUNDARY CONDITION 

If in modelling a longshore problem it is known that the flow profile at one artificial 
boundary is the same as the flow profile at the second boundary, then it is possible to apply a 
repeatability condition. The idea has also been applied to the modelling of longshore 
currents by Zienkiewicz and Heinrich.’ In this case the shallow water equations are solved 
with the repeatibility condition specifying that the velocities at corresponding nodal points on 
the artificial boundaries are identical. The condition is restrictive in that the beach slope and 
water depth need to be identical at each end of the model. If, in extending the length of the 
model, there are no changes in the boundary values of the velocities then a situation has 
been achieved which is equivalent to modelling an infinitely long beach. 

Modelling the artificial boundaries of the wave problem using a repeatability technique is 
more difficult as it involves enforcing the phase shift which occurs with a non-normal angle of 
wave incidence. Although the amplitude of the wave is constant along a line parallel to the 
shoreline for a plane beach there is a phase shift related to the angle of wave incidence. 
From Figure 3 it can be seen that the wave potentials at two corresponding nodes are given 
by 

$1 = &ela (10) 
where a is the ratio of the wavelength to the longshore component of the wavelength. 1 and 
2 are the ends of the model as shown in Figure 4. This is only true for a beach with constant 
slope. Snell’s law of refraction is applicable. For water waves the law reduces to 

sin 0 
-= const ant 
C 

Orris and Petyt7 encountered a similar condition in the analysis of vibration and response in 
periodic structures. They considered the displacements on one side of one of a number of 
identically linked substructures was a constant ratio times the displacements on the other 

Figure 3. Phase shift along section of plane beach 
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Figure 4. Boundary definition for variational calculus 
theory 

side. That is, the displacements u on the left-hand side are linked to displacements on the 
right-hand side by 

where p is the complex propagation constant. From the repeatability considerations if the 
harbour, or breakwater, is not influencing the boundaries then it seems possible to consider 
the section of beach of interest as one of a series of identically linked sections. 

To apply the boundary condition given by equation (10) a Lagrangian Multiplier technique 
was used. The additional boundary condition to be applied becomes 

URHS = U L H S ~ ~  (12) 

A(#, - &eia) = 0 (13) 
where h is the Lagrangian Multiplier and physically represents the flux of energy at the 
boundary. Equation (13) is added to the wave functional by a term 

r 

J, ~ ( $ 1 -  #aeia) d s  

The variation is now performed with respect to h as well as to # 
an: an an: = - . i3# +- .6A 
84 ah 

the second term yielding equation (13) in the finite element approximation. A three-noded 
element was used at the boundary, the third nodal variable being the Lagrange Multiplier. 
The first two nodal variables were the two velocity potentials at corresponding nodes at the 
two ends of the model. 

The condition when tested with nT phase shifts across the model yielded excellent 
agreement with the analytical solution. This is demonstrated in Figure 5. However, as the 
phase shift approached ( n  + 1 / 2 ) ~  the solution progressively deteriorated. This deterioration 
is shown by means of a phase shift diagram, Figure 6. On re-examination of the theory it was 
evident that a further gradient boundary condition was only being applied correctly in the nn- 
phase change situations. 

Consider the boundaries rl and rz, equivalent to the artificial boundaries, shown in Figure 
4. We are applying = #2e'a and hence the gradient boundary condition is 
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Figure 5. Wave elevation parallel to shoreline using imposed phase shift 
boundary conditions (b, = @je'y 

where n is the outward normal. Taking the additional Lagrange Multiplier terms added to 
the boundary as 

J A+,dr and 
rl 

the variation of A leads to 
respect to leads to 

equation (10). However, the wave functional variation with 

and variation with respect to #2 leads to 
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360'- 514' I 
Figure 6. Vector diagrams of phase angle parallel to shoreline using imposed phase shift boundary conditions. 

Dashed circle is theoretical solution. Scale halves in fifth and sixth diagrams 

Upon substituting (18) in (19) we obtain 

On comparing (20) with (16) it is evident that the application of Lagrange Multipliers is only 
valid when 

or 

that is when a phase shift of nm occurs across the model (without the application of a further 
gradient condition). 

ein = e-ior 

e2ia - - 1  

THE SMITH NON-REFLECTING BOUNDARY CONDITION 

An alternative to application of the repeatability condition is the removal of spurious 
reflections caused at the artificial boundary. Such techniques are collectively known as 
non-reflecting boundary conditions. 

Smith' describes a method of eliminating wave reflections from artificial boundaries by the 
addition of two solutions to the problem, one using the Neumann boundary condition and 
one using the Dirichlet condition. 

The Neumann boundary condition 

%=() 
an 
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Figure 7. Reflected waves resulting from application of 
Neumann and DirichIet conditions to a solid boundary 

is the usual boundary condition applied by the wave program on solid boundaries. It imposes 
a continuity of slope and thus the reflected wave is a mirror of the incident wave. The 
Dirichlet condition 

& = O  (22) 
results in a reflected wave 180" out of phase with the incident wave. These are sketched in 
Figure 7. Consequently the addition of the two solutions should eliminate the reflected wave. 
The Dirichlet condition was applied to the finite element program by adding in a large term 
to the boundary node 'stiffness' matrix, thus enforcing the boundary velocity potential to be 
effectively zero. However, the addition of two solutions did not eliminate the wave. As two 
boundaries were in operation two additional runs using mixed boundary conditions were also 
made and added to the previous solutions without improvement. The results are shown in 
Figure 8. 

A 
Y 

t r  

Figure 8. Smith boundary condition. Four solutions using boundary conditions as shown. Wave direction normal 
to shoreline, plots parallel to shoreline 
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The wavelength is constantly decreasing as the shoreline is approached and it is therefore 
possible to regard the problem as one of multiple reflections in which case as Smith states the 
reflections cannot be eliminated. 

LONGSHORE DAMPERS 

The reflected waves resulting from waves meeting an artificial boundary represent an excess 
of energy in the boundary region. It should be possible to remove this excess energy directly 
by damping out the component of the reflected wave which should have travelled on through 
the artificial boundary. By the same reasoning at the other boundary there is a lack of energy 
because the wave component that should be transmitted into the domain is absent. This wave 
component can be supplied by adding a negative damper which generates the incoming 
wave. The overall effect is that the energy removed from one boundary is added into the 
other. 
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Figure 9. Wave potential parallel to shoreline with and without damping 
elements on artificial boundaries. 12" angle of wave incidence 
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It is well known that dampers can be used to absorb outgoing waves, having been 
introduced by Zienkiewicz and Newton” for pressure waves and Lysmer and Kuhlemeyer6 
for elastic waves, at roughly the same time. In the present case it is not the entire wave that 
is to be absorbed, but only the longshore component of it. The usual condition for the 
absorption of the total wave, normally incident upon a boundary is 

*+ ik<f, = 0 
an 

In this case the longshore component has wavenumber k,, where ks = k sin 8,8 being the 
angle of incidence of the original wave. This follows from Snell’s law of refraction. The 
non-reflecting boundary condition is thus 

where the minus sign is for waves meeting a boundary and the plus sign for waves leaving the 
boundary. 

**. ABSOLUTE (3) 
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Figure 10. Wave elevation parallel to shoreline with and without damp- 
ing elements on artificial boundaries. 24” angle of wave incidence 
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The boundary condition is equivalent to adding a term to the wave functional given by 

*: ik sin e42 dI' 

which, after finite element discretization, yields a term 

2 

NTNk sin 8 d r  (26) 

The boundary condition was applied to the same test case as used previously and was 
found to work well for all angles of wave incidence. Figures 9 and 10 show the wave heights 
across the model for deep water angles of wave incidence of 12 and 24" respectively. The 
theoretical plot is obtained by assuming that the central values are correct and working out 

Y 

W 

-.I 
W 

0 
I 
v) 

f 
a 

- x  

Figure 11. Contour plot of wave potentials resulting when 
wave program is run without damping elements on artificial 
boundaries. Note: wave contours are forced normal to artifi- 
cial boundaries. Incident wave integral applied on dashed line 



274 D. I. AUSTIN AND P. BE'ITESS 

the remaining theoretical values using the phase angle at the centre and the expected phase 
shift across the model. The small oscillations in the absolute values are believed to be due to 
partial reflections off the sloping bed. 

The contour plots, Figures 11 and 12, show the 24" case without and with the boundary 
condition being applied. The 'S' shaped contours forced by the natural boundary condition 
can be clearly seen. Figure 13 shows both cases plotted normal to the beach at the midpoint 
of the model: The plots are similar. From Figures 11 and 12 it is apparent that a normal plot 
at any other point would show much greater differences. However, the result does point to 
an alternative which is to use only the central results from a model extended considerably 
beyond the region of interest. More results are given by Austin.2 

Figure 12. Contour plot of wave potentials using damping 
elements on artificial boundaries. 24" angle of wave incidence 
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Figure 13. Wave elevation normal to shoreline with and without damping 
elements on artificial boundaries. 24" angle of wave incidence 

CONCLUSIONS 

It is highly likely that there will be increasing use of finite element models for near shore 
wave effects, because of their ability to model accurately wave diffraction, refraction and 
resonance. In such open modelling situations it is of paramount importance that the artificial 
finite element boundaries be modelled accurately. Three possible schemes for dealing with 
boundaries perpendicular to the shore have been studied in this paper. The Smith condition, 
despite its great success in transient problems, does not seem appropriate for periodic 
problems and gives bad results. The Lagrange Multiplier constraint method gives accurate 
results, but imposes a fixed length on the numerical model for a given angle of wave 
incidence. This can be extremely inconvenient, especially where the same model is to be run 
for a range of incident wave angles. It can be used when the bed does not slope at a constant 
angle. The damper method can be used for any length of model and is easy to program. Both 
of the successful methods have drawbacks, but the dampers seem to be the 'best buy'. 
Undoubtedly, the concepts used in truncating these models need further refinement, but they 
do enable the analyst to bound his or her model of the nearshore wave processes without 
adverse effects. 
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